Runge-Kutta Software for the Parallel Solution of Boundary Value ODEs

نویسندگان

  • P. H. Muir
  • R. N. Pancer
  • K. R. Jackson
چکیده

In this paper we describe the development of parallel software for the numerical solution of boundary value ordinary differential equations (BVODEs). The software, implemented on two shared memory, parallel architectures, is based on a modification of the MIRKDC package, which employs discrete and continuous mono-implicit Runge-Kutta schemes within a defect control algorithm. The primary computational costs are associated with the almost block diagonal (ABD) linear systems representing the Newton matrices arising from the iterative solution of the nonlinear algebraic systems which result from the discretization of the ODEs. The most significant modification featured in the parallel version of the code is the replacement of the sequential ABD linear system software, COLROW, which employs alternating row and column elimination, with new parallel ABD linear system software, RSCALE, which is based on a recently developed parallel block eigenvalue rescaling algorithm. Other modifications are associated with the parallelization of the setup of the ABD systems, the setup of the approximate solution interpolants, and the estimation of the defect. The numerical results show that nearly optimal speedups can be obtained, and that substantial speedups in overall solution time are achieved, compared with the sequential version of MIRKDC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PMIRKDC: a parallel mono-implicit Runge-Kutta code with defect control for boundary value ODEs

We describe parallel software, PMIRKDC, for solving boundary value ordinary differential equations (BVODEs). This software is based on the package, MIRKDC, which employs monoimplicit Runge-Kutta schemes within a defect control algorithm. The primary computational costs involve the treatment of large, almost block diagonal (ABD) linear systems. The most significant feature of PMIRKDC is the repl...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Order Barriers and Characterizations for Continuous Mono-implicit Runge-kutta Schemes

The mono-implicit Runge-Kutta (MIRK) schemes, a subset of the family of implicit Runge-Kutta (IRK) schemes, were originally proposed for the numerical solution of initial value ODEs more than fifteen years ago. During the last decade, a considerable amount of attention has been given to the use of these schemes in the numerical solution of boundary value ODE problems, where their efficient impl...

متن کامل

Parallel Iterated Runge Kutta Methods and Applications

The iterated Runge Kutta IRK method is an iteration scheme for the numerical solu tion of initial value problems IVP of ordinary di erential equations ODEs that is based on a predictor corrector method with an Runge Kutta RK method as corrector Embed ded approximation formulae are used to control the stepsize We present di erent parallel algorithms of the IRK method on distributed memory multip...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000